DOI: https://doi.org/10.15368/theses.2013.38
Available at: https://digitalcommons.calpoly.edu/theses/979
Date of Award
5-2013
Degree Name
MS in Engineering - Materials Engineering
Department/Program
Materials Engineering
Advisor
Trevor S. Harding
Abstract
Due to their ability to confer enhanced surface properties without compromising the properties of the substrate, coatings have become ubiquitous in heavy industrial applications for corrosion, wear, and thermal protection, among others. Kinetic Metallization (KM), a solid-state impact consolidation and coating process, is well-suited for depositing industrial coatings due to its versatility, low substrate heat input, and low cost. The ability of KM coatings to adhere to the substrate is determined by the quality of the interface. The purpose of this study is to develop a model to predict the interfacial quality of KM coatings using known coating and substrate properties. Of the various contributions to adhesion of KM coatings, research suggests that the thermodynamic Work of Adhesion (WAD) is the most fundamental. It is useful to define interfacial quality in terms of the critical strain energy release rate (GC) at which coating delamination occurs. Studies show that GC for a given interface is related to WAD. This study attempts to develop a theoretical model for calculating WAD and understand the relationship between GC and WAD. For a bimetallic interface between two transition metals, WAD can be theoretically calculated using known electronic and physical properties of each metal: the molar volume, V, the surface energy, γ, and the enthalpy of alloy formation, ΔHinterface; ΔHinterface is a function of the molar volume, V, the work function, φ, and the electron density at the boundary of the Wigner-Seitz cell, nWS.WAD for Ni-Cu and Ni-Ti interfaces were 3.51 J/m2 and 4.55 J/m2, respectively. A modified Four-point bend testing technique was used to experimentally measure GC for Ni-Cu and Ni-Ti specimens produced by KM. These tests yielded mean GC values of 50.92 J/m2 and 132.68 J/m2 for Ni-Cu and Ni-Ti specimens, respectively. Plastic deformation and surface roughness are likely the main reasons for the large discrepancy between GC and WAD. At the 95% confidence level, the mean GC of the Ni-Ti interface is significantly higher than that of the Ni-Cu interface. Further testing is recommended to better understand the relationship between WAD and GC.
Included in
Metallurgy Commons, Other Materials Science and Engineering Commons, Structural Materials Commons