Date of Award

12-2012

Degree Name

MS in Biomedical Engineering

Department/Program

Biomedical and General Engineering

Advisor

Trevor Cardinal

Abstract

Peripheral arterial occlusive disease (PAOD) is an ischemic disease characterized by narrowing of the peripheral arteries due to the accumulation of atherosclerotic plaque in the inner lining of the vessels, which disrupts blood flow to downstream tissues. Blood can be redirected into collateral vessels, natural bypasses around arterial occlusions, causing shear-induced outward remodeling of the vessels. The enlarged vessels facilitate transfer of increased blood flow to downstream tissues. The remodeling process, however, may impair vasodilation, which in turn may cause or contribute to intermittent claudication- transient pain brought on by locomotion. To stimulate the growth of collateral arteries, the femoral arteries of young, otherwise healthy mice were ligated distally to the profunda femoris, the stem to the gracilis collateral circuit. The diameter of the profunda femoris artery was measured at rest and following gracilis muscle contraction 7 and 28 days post-surgery using intravital microscopy. Enlarged resting diameter, consistent with collateral enlargement, and impaired vasodilation was observed at day 7, but not at day 28. To determine if impaired functional vasodilation is due to impaired endothelial- or smooth muscle-dependent responses during outward remodeling, cell-dependent vasodilators were applied to the hindlimb. Endothelial- and smooth muscle-dependent vasodilation was significantly impaired 7 days post-ligation, but not 28 days after. This data supports the hypothesis that smooth muscle dysfunction causes impaired functional vasodilation in the early stages of collateral enlargement.

Share

COinS