Date of Award

11-2012

Degree Name

MS in Aerospace Engineering

Department/Program

Aerospace Engineering

Advisor

Faysal Kolkailah

Abstract

Global awareness and preservation have spurred increasing interest in utilizing environmentally friendly materials for high-performance structural applications. Biocomposites pose an appealing solution to this issue and are characterized by their sustainable lifecycles, biodegradable qualities, light weight, remarkable strength, and exceptional stiffness. Many of these structural qualities are found in applications that exhibit flexural loading conditions, and this study focuses on improving the bending performance of engineered biocomposite structures. The current application of biocomposites is increasing rapidly, so this expanding research explores other natural constituent materials for biocomposite structures under flexural loading.

The renewable material investigated in this study was experimentally and numerically validated by optimizing the mechanical characteristics of bamboo fibers in biocomposite structures under flexural loading conditions through various thermal and organic chemical treatment methods. Therefore, bending performance of a biocomposite truss and I-beam are analyzed to demonstrate the benefits of utilizing optimally treated bamboos in their design.

To accomplish this goal, the first task consisted of treating bamboos by thermal and chemical means to determine the resulting effects on the compressive and tensile mechanical properties through experimental testing. Results indicated a significant improvement in strength, stiffness, and weight reduction. An extensive analysis determined the optimal treatment method that was utilized for flexural loading conditions.

The second task entailed studying the flexural behavior of the optimally treated bamboo in two geometric configurations, a hollow cylinder and veneer strip, to determine the resultant properties for the truss and I-beam structure. The effect of node location on flexural performance was also studied to establish design guidelines for the applied structures. Bending tests indicated that node location affects the strength and stiffness of the hollow cylindrical configuration but has minimal effects on the veneer strip. Observations discovered by this study were employed into the designs of the applied structures that yielded excellent mechanical performance through flexural testing.

The final task required conducting a finite element analysis in Abaqus/CAE on the performance of each structural application to validate experimental results. A conclusive analysis revealed good agreement between the numerical method and experimental result.

Share

COinS