DOI: https://doi.org/10.15368/theses.2012.104
Available at: https://digitalcommons.calpoly.edu/theses/787
Date of Award
6-2012
Degree Name
MS in Aerospace Engineering
Department/Program
Aerospace Engineering
Advisor
Kira Abercromby
Abstract
We are in an era of massive spending cuts in educational institutions, aerospace companies and governmental entities. Educational institutions are pursuing more training for less money, aerospace companies are reducing the cost of gaining ight heritage and the government is cutting budgets and their response times. Organizations are accomplishing this improved efficiency by moving away from large-scale satellite projects and developing pico and nanosatellites following the CubeSat specifications. One of the major challenges of developing satellites to the standard CubeSat mission requirements is meeting the exceedingly tight power, data and communication constraints.
A MATLAB toolbox was created to assist the CubeSat community with understanding these restrictions, optimizing their systems, increasing mission success and decreasing the time building to these initial requirements. The Toolbox incorporated the lessons learned from the past nine years of CubeSats' successes and Analytical Graphics, Inc. (AGI)'s Satellite Tool Kit (STK). The CubeSat Mission Planning Toolbox (CMPT) provides graphical representations of the important requirements a systems engineer needs to plan their mission. This includes requirements for data storage, ground station facilities, orbital parameters, and power. CMPT also allows for a comparison of broadcast (BC) downlinking to Ground Station Initiated (GSI) downlinking for payload data using federated ground station networks. Ultimately, this tool saves time and money for the CubeSat systems engineer