DOI: https://doi.org/10.15368/theses.2011.207
Available at: https://digitalcommons.calpoly.edu/theses/649
Date of Award
12-2011
Degree Name
MS in Mechanical Engineering
Department/Program
Mechanical Engineering
Advisor
Tom Mase
Abstract
An improved and repeatable method for meshing golf club heads using finite elements in TrueGrid® was developed. Using solid brick elements through the thickness of the club head instead of shell elements better represents the many thickness variations throughout each section of a club head. This method also results in a high quality mesh at the center of the club head sections while still maintaining high quality at the edges. A simulation procedure was also developed to predict the acoustic pressure at a designated point in an acoustic medium of a golf club and ball impact using the BEM and Rayleigh methods in LS-DYNA®. The simulation time and computing power required for the impact are modest, while the acoustic simulation time and computing power are much greater. The Rayleigh method provides an alternative which can greatly reduce these requirements. The simulation of sound produced from the ball and a USGA COR plate, generic driver, and hybrid impact was accomplished with reasonable results. Experimental testing was performed using a USGA plate to validate the plate result. A simple tap test and an air cannon test were performed to record the acoustic response with a microphone. A Fast Fourier Transform was performed to obtain the frequency response. These two tests correlated with each other, indicating that air cannon procedures could be negated in favor of a much simpler tap test during prototype testing for acoustics. The simulation frequency responses showed similar results to the experimental tests, demonstrating that the procedure developed in this project can be a viable and effective method for determining the acoustic response of the golf club and ball impact.
Included in
Acoustics, Dynamics, and Controls Commons, Computer-Aided Engineering and Design Commons