Available at: https://digitalcommons.calpoly.edu/theses/2835
Date of Award
6-2024
Degree Name
MS in Electrical Engineering
Department/Program
Electrical Engineering
College
College of Engineering
Advisor
Payam Nayeri
Advisor Department
Electrical Engineering
Advisor College
College of Engineering
Abstract
This thesis investigates the implementation and performance of Shuffled Faster than Nyquist (SFTN) signaling, a communication method that enhances spectral efficiency and provides physical layer security (PLS) in wireless communications. In Faster than Nyquist signaling, the Nyquist inter-symbol interference (ISI) criterion is exceeded, thereby increasing spectral efficiency. By varying the transmission rate of symbols above the Nyquist rate, SFTN signaling is able to obfuscate the timing of transmitted symbols with ISI. The work in this thesis evaluates the performance of SFTN in Additive White Gaussian Noise (AWGN) channels and the MATLAB 802.11ax fading channels. Results show that while SFTN signaling offers the ability to introduce PLS, the sensitivity of the waveform is significantly influenced by the choice of symbol transmission rates and channel conditions.