Available at: https://digitalcommons.calpoly.edu/theses/2742
Date of Award
8-2023
Degree Name
MS in Mechanical Engineering
Department/Program
Mechanical Engineering
College
College of Engineering
Advisor
Xi Wu
Advisor Department
Mechanical Engineering
Advisor College
College of Engineering
Abstract
This thesis focuses on the comprehensive study of controlling a customized Active Magnetic Bearing (AMB) installed on Bently Nevada’s RK4 rotor kit in Cal Poly’s Vibrations and Rotordynamics Lab. The AMB was uniquely designed and manufactured by a Cal Poly senior project team to fit Bently’s rotor kit and the results of this research are distinctive to the custom system. To achieve practical functionality of the AMB system, we designed a controller a Virtual Instrument (VI) using the National Instrument software, LabVIEW. From the experimental study, we calibrated the programming to find unknown parameters of the AMB system and validated the design using a well-established industrial rotordyanmics software, Bentley Nevada System 1. The development of the control programming consists of theoretical analysis (MATLAB/ Simulink) and simulation validation (MSC ADAMS View). Both linear and non-linear models were implemented in MATLAB and Simulink to effectively tune a Proportional-Integral-Derivative (PID) control developed for various AMB models. To validate the theoretical results, we compared them to results from a co-simulation using MSC Adams VIEW, a multi-body dynamics simulation, and Simulink. From experimental trial and error at a shaft rotational speed of 2800 rpm, a 16% decrease in shaft orbit was achieved. These results demonstrate the practicality of the control program and custom AMB rotor kit that can be used for further research.