DOI: https://doi.org/10.15368/theses.2010.44
Available at: https://digitalcommons.calpoly.edu/theses/274
Date of Award
4-2010
Department/Program
Biomedical and General Engineering
Advisor
Lanny Griffin
Abstract
Firearms are present in two-thirds of United States households. As of 2003, roughly 500,000 projectile wounds occur annually in the United States. This costs an estimated 2.3 billion dollars of medical spending. The best treatment of gunshot wounds relies heavily on experience, but even with experience the unpredictable nature of ballistics can make treatment difficult.
Wound ballistics studies the injury pattern of a particular bullet. Ballistic gelatin tests are used to analyze this pattern. A block of 10 or 20% ballistic gelatin is set and a bullet is fired through the block. Key characteristics of the wound profile seen in this test include: depth penetration, permanent cavity, and temporary cavity. Even with ballistic gelatin tests, there is still confusion and many unknowns throughout wound ballistic literature.
Finite element analysis (FEA) can be used to reproduce the wound profile of a ballistic gelatin test. A .38 lead round nose was chosen to model. The bullet was assigned as an elastic plastic material and the ballistic gelatin block was assigned as an elastic plastic and viscoelastic material. SolidWorks®, TrueGrid®, and LS-DYNA® were used to create the models.
Two elastic plastic and two viscoelastic simulations were developed from these models. Elastic Plastic 2 and Viscoelastic 1 were able to reproduce a depth penetration, temporary cavity, and permanent cavity. Elastic Plastic 1 and Viscoelastic 2 were unable to reproduce the temporary cavity. These simulations provided hopeful results, but further investigation is needed for contribution to the advancement of bullet wound treatment.