Available at: https://digitalcommons.calpoly.edu/theses/2738
Date of Award
6-2022
Degree Name
MS in Computer Science
Department/Program
Computer Science
College
College of Engineering
Advisor
Ayaan Kazerouni
Advisor Department
Computer Science
Advisor College
College of Engineering
Abstract
Programming is a key skill in many domains outside computer science. When used judiciously, programming can empower people to accomplish what might be impossible or difficult with traditional methods. Unfortunately, students, especially non-CS majors, frequently have trouble while learning to program. This work reports on the challenges and opportunities faced by Physical Chemistry (PChem) students at Cal Poly, SLO as they learn to program in MATLAB. We assessed the PChem students through a multiple-choice concept inventory, as well as through “think-aloud” interviews. Additionally, we examined the students’ perceptions of and attitudes towards programming. We found that PChem students are adept at applying programming to a subset of problems, but their knowledge is fragile; like many intro CS students, they struggle to transfer their knowledge to different contexts and often express misconceptions about programming. However, they differ in that the PChem students are first and foremost Chemistry students, and so struggle to recognize appropriate applications of programming without scaffolding. Further, many students do not perceive themselves as competent general- purpose programmers. These factors combine to discourage students from applying programming to novel problems, even though it may be greatly beneficial to them. We leveraged this data to create a workshop with the goal of helping PChem students recognize their programming knowledge as a tool that they can apply to various contexts. This thesis presents a framework for addressing challenges and providing opportunities in domain-specific CS education.
Included in
Computational Engineering Commons, Curriculum and Instruction Commons, Educational Methods Commons