Date of Award

6-2023

Degree Name

MS in Electrical Engineering

Department/Program

Electrical Engineering

College

College of Engineering

Advisor

Majid Poshtan

Advisor Department

Electrical Engineering

Advisor College

College of Engineering

Abstract

The classical methodologies for synchronous machine modeling provide a solid estimation for synchronous machine behavior but are limited in terms of accuracy due to the assumptions made in the modeling process. The equivalent circuit model developed by the classical approach breaks down the entire machine into a singular impedance component. This allows the model to be generated more quickly but limits its accuracy. In the pursuit of developing a more realistic model, this thesis outlines the parameter measurement of a Hampden SM-100 synchronous machine. In determining the SM-100’s experimental parameters, this thesis executes and analyzes new experimental approaches to synchronous machine modeling. With the results of these approaches, a model for the Hampden SM-100 synchronous machine is developed that considers the rotor, stator, and core parameters of the synchronous machine separately.

Share

COinS