DOI: https://doi.org/10.15368/theses.2022.102
Available at: https://digitalcommons.calpoly.edu/theses/2615
Date of Award
8-2022
Degree Name
MS in Biomedical Engineering
Department/Program
Biomedical Engineering
College
College of Engineering
Advisor
Scott Hazelwood
Advisor Department
Biomedical Engineering
Advisor College
College of Engineering
Abstract
Back pain and injury are a global health issue and are a leading cause of work and activity absence. Prevention would not only save those affected from the burden of pain and discomfort, but would also save people from loss of over 290 million workdays annually and save the healthcare system billions of dollars in expenses per year. Successful research and development of a wearable technology capable of comprehensively monitoring spinal postures that are leading causes of back pain and injury can result in prevention of mild to severe back pain and injury for high-risk people. To accomplish this, the Smart Spine Tape is being developed with specific focus on accuracy, usability, and accessibility, all of which are important factors to consider when engineering for a wide array of populations. Accuracy was assessed using three human participants, with spinal angle data of the Smart Spine Tape being compared to established motion analysis technology data. Prototypes of the device showed promise in the ability to accurately measure spinal postures, but inconsistencies between samples and trials indicated that further development is necessary. Usability and accessibility were assessed using ten human participants who completed one workout each and reported on the tape’s comfort, durability, and ease of use, as well as their thoughts on how much they would be willing to pay for a fully functional version of the device. Participants reported high comfort, high durability, and moderate ease of use throughout their experiences, with the average price range that they would be willing to pay being between $25 and $75. Future directions have been identified that address inconsistencies in data collected by the Smart Spine Tape, possibly caused by inconsistent resistive properties of the piezoresistive ink and plastic deformation of the tape during testing. These future directions involve modifying testing, material, and fabrication methods.