DOI: https://doi.org/10.15368/theses.2018.178
Available at: https://digitalcommons.calpoly.edu/theses/2514
Date of Award
11-2018
Degree Name
MS in Biomedical Engineering
Department/Program
Biomedical and General Engineering
College
College of Agriculture, Food, and Environmental Sciences
Advisor
Kristen O’Halloran Cardinal
Advisor Department
<--Please Select Department-->
Advisor College
College of Agriculture, Food, and Environmental Sciences
Abstract
Blood vessel mimics (BVMs) are tissue engineered blood vessels that are intended as an intermediate testing environment for intravascular devices, such as stents. Specifically, Cal Poly’s Tissue Engineering Lab hypothesizes that BVMs can be used to test endothelial cell and smooth muscle cell responses to existing and new vascular stents. Characterization techniques are required for BVMs to be accepted as a valid testing model, prior to being employed as an in vitro model to determine the effects of medical treatments. Quantitative real-time polymerase chain reaction (qPCR) is one available option for evaluating gene expression of tissues. qPCR can be performed on DNA synthesized from RNA isolated from cells, and in this application, will provide quantitative information on what proteins where being transcribed within the cells at the time of RNA isolation. qPCR can be used to determine the proteins expressed in BVMs at baseline in order to then characterize changes in protein expression induced by stent deployment within the BVM.
The aim of this thesis was to optimize existing qPCR protocols, and implement the optimized protocols to characterize gene expression of stented and unstented blood vessel mimics (BVMs) and cells from a donor with Diabetes grown in Cal Poly’s Tissue Engineering Laboratory. To accomplish this goal, existing qPCR protocols were evaluated and modified to ensure reproducible, valid results were produced. Standard operating procedures were created for RNA isolation, cDNA synthesis, qPCR and qPCR data analysis. Optimized qPCR methods were then applied to BVMs from umbilical and coronary cell sources to compare the models and to study the BVM responses to stent deployment. Additional primers were also identified for potential usage as reference genes and as diabetic markers for diseased BVMs.