DOI: https://doi.org/10.15368/theses.2022.43
Available at: https://digitalcommons.calpoly.edu/theses/2497
Date of Award
6-2022
Degree Name
MS in Civil and Environmental Engineering
Department/Program
Civil and Environmental Engineering
College
College of Engineering
Advisor
Rebekah Oulton
Advisor Department
Civil and Environmental Engineering
Advisor College
College of Engineering
Abstract
Pharmaceutical drugs are being produced and consumed in increasing quantities every year and are poorly treated by conventional wastewater treatment processes, leading to increasing detection of such compounds in surface water, groundwater, and municipal drinking water. Soil aquifer treatment (SAT) is a promising method for treating these emerging compounds through combined adsorption and degradation of target compounds in soil. This thesis examines the consistency of results from typical studies like adsorption isotherms and soil columns utilized in analysis of SAT performance, across varying experimental scales. The adsorption behavior of two pharmaceuticals was investigated as a function of experimental scale and soil organic content in adsorbent media. This thesis shows that broad trends in pharmaceutical adsorption are not dependent upon experimental scale. Across adsorption isotherm, bench-scale soil column, and large-scale soil column experiments, adsorption and of both drugs was greater in organic soil than inorganic soil, although dispersive transport may have increased in some experiments. Across all experiments, carbamazepine was adsorbed by soils more than diclofenac. Some inconsistencies were observed across scales between the two organic soils, a mediumorganic and high-organic soil, where adsorption was generally greater in high organic soil, but sometimes observed to be greater in medium organic soil. This may suggest that the decrease of experimental control resulting from increased experimental scale obfuscates more nuanced relationships in SAT experimental conditions. Broad trends in data showing whether or not a soil displayed significant adsorptive behavior and which pharmaceutical was adsorbed more were consistent. However, the degree of partitioning via adsorption varied across scales as experimental control decreased with increasing physical scale.
Included in
Civil Engineering Commons, Environmental Engineering Commons, Water Resource Management Commons