DOI: https://doi.org/10.15368/theses.2022.64
Available at: https://digitalcommons.calpoly.edu/theses/2494
Date of Award
6-2022
Degree Name
MS in Electrical Engineering
Department/Program
Electrical Engineering
College
College of Engineering
Advisor
Xiao-Hua (Helen) Yu
Advisor Department
Electrical Engineering
Advisor College
College of Engineering
Abstract
Bearings are the essential components of modern rotating machines. Bearing faults can cause severe machine damages or even breakdowns.
In recent years, artificial intelligence and deep learning have been successfully applied to fault detection. In this thesis, convolutional neural networks (CNN) are employed for bearing fault detection and classification. Computer simulations results demonstrate that the CNN based approach is advantageous over the conventional regression model, with an overall accuracy of 99.5%.