DOI: https://doi.org/10.15368/theses.2022.34
Available at: https://digitalcommons.calpoly.edu/theses/2467
Date of Award
6-2022
Degree Name
MS in Mathematics
Department/Program
Mathematics
College
College of Science and Mathematics
Advisor
Linda Patton
Advisor Department
Mathematics
Advisor College
College of Science and Mathematics
Abstract
We will explore the numerical range of the block Toeplitz operator with symbol function \(\phi(z)=A_0+zA_1\), where \(A_0, A_1 \in M_2(\mathbb{C})\). A full characterization of the numerical range of this operator proves to be quite difficult and so we will focus on characterizing the boundary of the related set, \(\{W(A_0+zA_1) : z \in \partial \mathbb{D}\}\), in a specific case. We will use the theory of envelopes to explore what the boundary looks like and we will use geometric arguments to explore the number of flat portions on the boundary. We will then make a conjecture as to the number of flat portions on the boundary of the numerical range for any \(2 \times 2\) matrices \(A_0\) and \(A_1\). We finish by providing examples of flat portions on the boundary of the numerical range when \(A_0, A_1 \in M_n(\mathbb{C})\), for \(3 \leq n \leq 5\).