DOI: https://doi.org/10.15368/theses.2020.159
Available at: https://digitalcommons.calpoly.edu/theses/2400
Date of Award
12-2020
Degree Name
MS in Mechanical Engineering
Department/Program
Mechanical Engineering
College
College of Engineering
Advisor
Hans Mayer
Advisor Department
Mechanical Engineering
Advisor College
College of Engineering
Abstract
The growing popularity of additive manufacturing in commercial applications has al- lowed for new ideas and new ways of thinking when designing components. Further optimization at the component level is possible, though powder metallurgy is in its infancy. This study explores the possibility of using additive manufacturing to develop better labyrinth seals in turbomachinery. Labyrinth seals have a torturous fluid path with high losses, thus limiting the amount of fluid leakage. These types of seals can be non-rotating, allowing them to better take advantage of the additive manufacturing process due to the absence of rotating stresses. Labyrinth seal performance is defined by its ability to limit leakage through a seal. Investigations on the ability to reduce this leakage using the inherent roughness from the additive manufacturing process and the addition of complex geometry only capable of being produced by additive manufacturing are explored. Incompressible and compressible fluid models are utilized in the study. Perfectly smooth seals with tooth counts of four, six, and eight are first simulated using ANSYS FLUENT and compared to theoretical models to determine accuracy. Roughness is then applied to the seals and leakage decreases of 0.5% to 1.5% are experienced for the incompressible model. Decreases of 1.0% to 3.5% are experienced for the compressible model. Flow visualization and line analysis are conducted for all seals tested to understand how fluid flow is behaving within the clearance region of the seal and seal chambers. Several additive manufacturing geometries are simulated against a control seal to determine geometries with the largest effect on leakage rates. These geometries are then adapted to a six tooth seal and simulated with roughness. This additively manufactured seal is then compared to the smooth and rough six tooth seal for both incompressible and compressible fluids. Leakage was decreased by 5% to 8% for the incompressible model and 5% to 7% reductions for the compressible model when compared to the smooth seal. Flow visualization and line analysis were also conducted for the additively manufactured six tooth seal. A basic outline for an experiment and test stand were developed for future work.