DOI: https://doi.org/10.15368/theses.2021.69
Available at: https://digitalcommons.calpoly.edu/theses/2337
Date of Award
6-2021
Degree Name
MS in Aerospace Engineering
Department/Program
Aerospace Engineering
College
College of Engineering
Advisor
Kira Abercromby
Advisor Department
Aerospace Engineering
Advisor College
College of Engineering
Abstract
Once a satellite has completed its operational period, it must be removed responsibly in order to reduce the risk of impacting other missions. Geostationary Transfer Orbits (GTOs) offer unique challenges when considering disposal of spacecraft, as high eccentricity and orbital energy give rise to unique challenges for spacecraft designers. By leveraging small satellite research and integration techniques, a deployable drag sail module was analyzed that can shorten the expected orbit time of launch vehicle stages in GTO. A tool was developed to efficiently model spacecraft trajectories over long periods of time, which allowed for analysis of an object’s expected lifetime after its operational period had concluded. Material limitations on drag sail sizing and performance were also analyzed in order to conclude whether or not a system with the required orbital performance is feasible. It was determined that the sail materials and configuration is capable of surviving the expected GTO environment, and that a 49 m2 drag sail is capable of sufficiently shortening the amount of time that the space vehicles will remain in space.
Included in
Aeronautical Vehicles Commons, Astrodynamics Commons, Navigation, Guidance, Control and Dynamics Commons