Date of Award


Degree Name

MS in Electrical Engineering


Electrical Engineering


College of Engineering


Joseph Callenes-Sloan

Advisor Department

Electrical Engineering

Advisor College

College of Engineering


Due to fundamental physical limitations, conventional digital circuits have not been able to scale at the pace expected from Moore’s law. In addition, computationally intensive applications such as neural networks and computer vision demand large amounts of energy from digital circuits. As a result, energy efficient alternatives are needed in order to provide continued performance scaling. Analog circuits have many well known benefits: the ability to store more information onto a single wire and efficiently perform mathematical operations such as addition, subtraction, and differential equation solving. However, analog computing also comes with drawbacks such as its sensitivity to process variation and noise, limited scalability, programming difficulty, and poor compatibility with digital circuits and design tools. We propose to leverage the strengths of analog circuits and avoid its weaknesses by using digital circuits and time-encoded computation. Time-encoded circuits also operate on continuous data but are implemented using digital circuits. We propose a novel scalable general purpose analog processor using time-encoded circuits that is well suited for emerging applications that require high numeric precision. The processor’s datapath, including time-domain register file and function units are described. We evaluate our proposed approach using an implementation that is simulated with a 0.18µm TSMC process and demonstrate that this approach improves the performance of a scientific benchmark by 4x compared against conventional analog implementations and improves energy consumption by 146x compared against digital implementations.

Available for download on Monday, June 10, 2024