DOI: https://doi.org/10.15368/theses.2021.87
Available at: https://digitalcommons.calpoly.edu/theses/2305
Date of Award
6-2021
Degree Name
MS in Electrical Engineering
Department/Program
Electrical Engineering
College
College of Engineering
Advisor
Joseph Callenes-Sloan
Advisor Department
Electrical Engineering
Advisor College
College of Engineering
Abstract
Due to fundamental physical limitations, conventional digital circuits have not been able to scale at the pace expected from Moore’s law. In addition, computationally intensive applications such as neural networks and computer vision demand large amounts of energy from digital circuits. As a result, energy efficient alternatives are needed in order to provide continued performance scaling. Analog circuits have many well known benefits: the ability to store more information onto a single wire and efficiently perform mathematical operations such as addition, subtraction, and differential equation solving. However, analog computing also comes with drawbacks such as its sensitivity to process variation and noise, limited scalability, programming difficulty, and poor compatibility with digital circuits and design tools. We propose to leverage the strengths of analog circuits and avoid its weaknesses by using digital circuits and time-encoded computation. Time-encoded circuits also operate on continuous data but are implemented using digital circuits. We propose a novel scalable general purpose analog processor using time-encoded circuits that is well suited for emerging applications that require high numeric precision. The processor’s datapath, including time-domain register file and function units are described. We evaluate our proposed approach using an implementation that is simulated with a 0.18µm TSMC process and demonstrate that this approach improves the performance of a scientific benchmark by 4x compared against conventional analog implementations and improves energy consumption by 146x compared against digital implementations.
- Usage
- Abstract Views: 125
- Downloads: 19
Included in
Computer and Systems Architecture Commons, VLSI and Circuits, Embedded and Hardware Systems Commons