DOI: https://doi.org/10.15368/theses.2021.45
Available at: https://digitalcommons.calpoly.edu/theses/2290
Date of Award
6-2021
Degree Name
MS in Electrical Engineering
Department/Program
Electrical Engineering
College
College of Engineering
Advisor
Taufik
Advisor Department
Electrical Engineering
Advisor College
College of Engineering
Abstract
This project proposes a new hybrid voltage divider DC-DC converter that utilizes switching capacitors and inductors to produce zero voltage switching (ZVS) at the turn on state of its switches. By achieving ZVS, the switching losses are significantly reduced; thus, increasing the overall efficiency of the converter at various loads. The goal for this thesis is to perform analysis of the operation of the converter, derive equations for sizing the main components, and demonstrate its functionality through computer simulation and hardware prototype. Results of the simulation and hardware testing show that the proposed converter produces the desired output voltage while providing the zero voltage switching benefits. The converter’s efficiency reaches above 92% starting from 1A load and continues to increase to 97.6% at 4A load. Overall, results from this thesis verifies the potential of the proposed converter as an alternative solution to achieve a very efficient DC-DC solution when half of the input voltage is required at the output without the use of complex feedback control circuitry.