DOI: https://doi.org/10.15368/theses.2020.144
Available at: https://digitalcommons.calpoly.edu/theses/2234
Date of Award
12-2020
Degree Name
MS in Computer Science
Department/Program
Computer Science
College
College of Engineering
Advisor
Jonathan Ventura
Advisor Department
Computer Science
Advisor College
College of Engineering
Abstract
Depth detection is a very common computer vision problem. It shows up primarily in robotics, automation, or 3D visualization domains, as it is essential for converting images to point clouds. One of the poster child applications is self driving cars. Currently, the best methods for depth detection are either very expensive, like LIDAR, or require precise calibration, like stereo cameras. These costs have given rise to attempts to detect depth from a monocular camera (a single camera). While this is possible, it is harder than LIDAR or stereo methods since depth can't be measured from monocular images, it has to be inferred. A good example is covering one eye: you still have some idea how far away things are, but it's not exact. Neural networks are a natural fit for this. Here, we build on previous neural network methods by applying a recent state of the art model to panoramic images in addition to pinhole ones and performing a comparative evaluation. First, we create a simulated depth detection dataset that lends itself to panoramic comparisons and contains pre-made cylindrical and spherical panoramas. We then modify monodepth2 to support cylindrical and cubemap panoramas, incorporating current best practices for depth detection on those panorama types, and evaluate its performance for each type of image using our dataset. We also consider the resources used in training and other qualitative factors.
Included in
Artificial Intelligence and Robotics Commons, Numerical Analysis and Scientific Computing Commons