DOI: https://doi.org/10.15368/theses.2019.73
Available at: https://digitalcommons.calpoly.edu/theses/2028
Date of Award
6-2019
Degree Name
MS in Electrical Engineering
Department/Program
Electrical Engineering
Advisor
NFN Taufik
Abstract
n this thesis project, a proposed architecture for the multiple input, single output conversion stage for the DC House was designed, simulated, and tested. This architecture allows for multiple different input sources to be used to create a single higher power output source. The design uses a DC-DC boost converter with a parallelable output which has been demonstrated to allow increased total output power as a function of the number of input sources available. The parallelable output has been shown to distribute load amongst the input sources relatively closely to optimize the system. This approach is also desirable since it allows for flexibility in multiple configurations it can be used in. The design was tested using hardware and data results show the performance met and exceeded the needs of the DC House project. Data was taken for configuration with 1, 2, 3, and 4 input sources providing greater than 600W of total output power at an efficiency of greater than 92%. This architecture demonstrates the possibility of expanding the total available power for a single output in proportion to the number of available input sources.