Date of Award

12-2018

Degree Name

MS in Computer Science

Department/Program

Computer Science

Advisor

Franz Kurfess

Abstract

Modern companies are increasingly relying on groups of individuals to reach organizational goals and objectives, however many organizations struggle to cultivate optimal teams that can maximize performance. Fortunately, existing research has established that group personality composition (GPC), across five dimensions of personality, is a promising indicator of team effectiveness. Additionally, recent advances in technology have enabled groups of humans to form real-time, closed-loop systems that are modeled after natural swarms, like flocks of birds and colonies of bees. These Artificial Swarm Intelligences (ASI) have been shown to amplify performance in a wide range of tasks, from forecasting financial markets to prioritizing conflicting objectives. The present research examines the effects of group personality composition on team performance and investigates the impact of measuring GPC through ASI systems. 541 participants, across 111 groups, were administered a set of well-accepted and vetted psychometric assessments to capture the personality configurations and social sensitivities of teams. While group-level personality averages explained 10% of the variance in team performance, when group personality composition was measured through human swarms, it was able to explain 29% of the variance, representing a 19% amplification in predictive capacity. Finally, a series of machine learning models were applied and trained to predict group effectiveness. Multivariate Linear Regression and Logistic Regression achieved the highest performance exhibiting 0.19 mean squared error and 81.8% classification accuracy.

Share

COinS