Date of Award


Degree Name

MS in Computer Science


Computer Science


Franz Kurfess


Gomoku, also called Five in a row, is one of the earliest checkerboard games invented by humans. For a long time, it has brought countless pleasures to us. We humans, as players, also created a lot of skills in playing it. Scientists normalize and enter these skills into the computer so that the computer knows how to play Gomoku. However, the computer just plays following the pre-entered skills, it doesn’t know how to develop these skills by itself. Inspired by Google’s AlphaGo Zero, in this thesis, by combining the technologies of Monte Carlo Tree Search, Deep Neural Networks, and Reinforcement Learning, we propose a system that trains machine Gomoku players without prior human skills. These are self-evolving players that no prior knowledge is given. They develop their own skills from scratch by themselves. We have run this system for a month and half, during which time 150 different players were generated. The later these players were generated, the stronger abilities they have. During the training, beginning with zero knowledge, these players developed a row-based bottom-up strategy, followed by a column-based bottom-up strategy, and finally, a more flexible and intelligible strategy with a preference to the surrounding squares. Although even the latest players do not have strong capacities and thus couldn’t be regarded as strong AI agents, they still show the abilities to learn from the previous games. Therefore, this thesis proves that it is possible for the machine Gomoku player to evolve by itself without human knowledge. These players are on the right track, with continuous training, they would become better Gomoku players.