DOI: https://doi.org/10.15368/theses.2018.56
Available at: https://digitalcommons.calpoly.edu/theses/1845
Date of Award
6-2018
Degree Name
MS in Computer Science
Department/Program
Computer Science
Advisor
Alexander Dekhtyar
Abstract
Computer vision research has been growing rapidly over the last decade. Recent advancements in the field have been widely used in staple products across various industries. The automotive and medical industries have even pushed cars and equipment into production that use computer vision. However, there seems to be a lack of computer vision research in the game industry. With the advent of e-sports, competitive and casual gaming have reached new heights with regard to players, viewers, and content creators. This has allowed for avenues of research that did not exist prior.
In this thesis, we explore the practicality of object detection as applied in games. We designed a custom convolutional neural network detection model, SmashNet. The model was improved through classification weights generated from pre-training on the Caltech101 dataset with an accuracy of 62.29%. It was then trained on 2296 annotated frames from the competitive 2.5-dimensional fighting game Super Smash Brothers Melee to track coordinate locations of 4 specific characters in real-time. The detection model performs at a 68.25% accuracy across all 4 characters. In addition, as a demonstration of a practical application, we designed KirbyBot, a black-box adaptive bot which performs basic commands reactively based only on the tracked locations of two characters. It also collects very simple data on player habits. KirbyBot runs at a rate of 6-10 fps.
Object detection has several practical applications with regard to games, ranging from better AI design, to collecting data on player habits or game characters for competitive purposes or improvement updates.