DOI: https://doi.org/10.15368/theses.2009.96
Available at: https://digitalcommons.calpoly.edu/theses/177
Date of Award
6-2009
Degree Name
MS in Mechanical Engineering
Department/Program
Mechanical Engineering
Advisor
John Ridgely
Abstract
Gold wire bonding typically uses 60 KHz ultrasonic frequency. Studies have been reported that increasing ultrasonic frequency from 60KHz to 120KHz can decrease bonding time, lower bonding temperature, and/or improve the bondability of Au metalized organic substrates. This thesis presents a systematic study of the effects of 120 KHz ultrasonic frequency on the reliability of fine pitch gold wire bonding. Two wire sizes, 25.4 and 17.8 μm in diameter (1.0 and 0.7 mil, respectively) were used. The gold wires were bonded to metalized pads over organic substrates with five different metallization. The studies were carried out using a thermosonic ball bonder that is able to easily switch from ultrasonic frequency from 60 KHz to 120 KHz by changing the ultrasonic transducer and the ultrasonic generator. Bonding parameters were optimized through design of experiment methodology for four different cases: 60 KHz with 25.4 μm wire, 60 KHz with 17.8 μm wire, 120 KHz with 25.4 μm wire, and 120 KHz with 17.8 μm wire. The integrity of wire bonds was evaluated by the wire pull and the ball bond shear tests. With the optimized bonding parameters, over 2,250 bonds were made for each frequency and wire size. The samples were then divided into three groups. The first group was subjected to temperature cycling from -55°C to +125°C with one hour per cycle for up to 1000 cycles. The second group was subject to thermal aging at 125°C for up to 1000 hours. The third group was subject to humidity at 85°C/85% relative humidity (RH) for up to 1000 hours. The bond integrity was evaluated through the wire pull and the ball shear tests immediately after bonding, and after each 150, 300, 500, and 1000 hours time interval in the reliability tests. The pull and shear data are then analyzed to compare the wire bond performance between different ultrasonic frequencies.