DOI: https://doi.org/10.15368/theses.2017.31
Available at: https://digitalcommons.calpoly.edu/theses/1732
Date of Award
5-2017
Degree Name
MS in Electrical Engineering
Department/Program
Electrical Engineering
Advisor
David B. Braun
Abstract
Energy Harvesting from Exercise Machines (EHFEM) is an ongoing project pursuing alternate forms of sustainable energy for Cal Poly State University. The EHFEM project seeks to acquire user-generated DC power from exercise machines and sell that energy back to the local grid as AC power. The end goal of the EHFEM project aims to integrate a final design with existing elliptical fitness trainers for student and faculty use in Cal Poly’s Recreational Center. This report examines whether including the DC-DC converter in the EHFEM setup produces AC power to the electric grid more efficiently and consistently than an EHFEM system that excludes a DC-DC converter. The project integrates an overvoltage protection circuit, a DC-DC converter, and a DC-AC microinverter with an available elliptical trainer modified to include an energy converting circuit. The initial expectation was that a DC-DC converter would increase, when averaged over time, the overall energy conversion efficiency of the EHFEM system, and provide a stable voltage and current level for the microinverter to convert DC power into AC power. In actuality, while including a DC-DC converter in a test setup allows the EHFEM system to function with less frequent interruptions, this occurs at the cost of lower efficiency. Testing demonstrates the EHFEM project can convert user-generated DC mechanical power into usable AC electrical power. Retrofitting existing equipment with the EHFEM project can reduce Cal Poly’s energy cost.