Date of Award

10-2016

Degree Name

MS in Computer Science

Department/Program

Computer Science

Advisor

Foaad Khosmood

Abstract

Did you hear where the thesis found its ancestors? They were in the "parent-thesis"! This joke, whether you laughed at it or not, contains a fascinating and mysterious quality: humor. Humor is something so incredibly human that if you squint, the two words can even look the same. As such, humor is not often considered something that computers can understand. But, that doesn't mean we won't try to teach it to them.

In this thesis, we propose the system Laff-O-Tron to attempt to predict when the audience of a public speech would laugh by looking only at the text of the speech. To do this, we create a corpus of over 1700 TED Talks retrieved from the TED website. We then adapted various techniques used by researchers to identify humor in text. We also investigated features that were specific to our public speaking environment. Using supervised learning, we try to classify if a chunk of text would cause the audience to laugh or not based on these features. We examine the effects of each feature, classifier, and size of the text chunk provided. On a balanced data set, we are able to accurately predict laughter with up to 75% accuracy in our best conditions. Medium level conditions prove to be around 70% accuracy; while our worst conditions result in 66% accuracy.

Computers with humor recognition capabilities would be useful in the fields of human computer interaction and communications. Humor can make a computer easier to interact with and function as a tool to check if humor was properly used in an advertisement or speech.

Share

COinS