Date of Award

6-2015

Degree Name

MS in Mechanical Engineering

Department/Program

Mechanical Engineering

Advisor

Joseph Mello

Abstract

This project accomplished two correlated goals of designing a new rotor blade to be used with the Cal Poly Wind Power Research Center, as well as defining the methodology required for the aerodynamic analysis of an optimized blade, the procedure required for generation of an accurate CAD model for the new blade geometry, and structural integrity verification procedure for the new blade via finite element analysis under several operating scenarios. The new rotor blades were designed to perform at peak efficiency at a much lower wind speed than the current CPWPRC rotor blades and incorporated a FEA verification process which was not performed on the earlier rotor blade design.

Since the wind characteristics relative to the location of the CPWPRC are essentially unchanging the most viable option, in regards to generating power for longer periods of time, is to redesign the HAWT rotor to capture more of the wind energy available. To achieve this, the swept area of the rotor was increased, suitable airfoils were utilized, and the new rotor blades were optimized to maximize their performance under the CPWPRC location’s wind conditions.

With an increased magnitude of wind energy being captured the aerodynamic loading on the rotor blades simultaneously increased which necessitated a structural analysis step to be implemented, both with classical hand calculations and with the assistance of an adequate FEA program, to ensure the new rotor blades did not fail under normal or extreme wind conditions. With the completion of this project the new rotor blade designed and analyzed in this report may be finalized and refined in order to be incorporated into the CPWPRC system in the future or the methodology defined throughout this project may be used to design an entirely different aerodynamically optimized rotor blade, including a CAD model and FEA structural integrity verification, as well.

Share

COinS