DOI: https://doi.org/10.15368/theses.2015.10
Available at: https://digitalcommons.calpoly.edu/theses/1345
Date of Award
3-2015
Degree Name
MS in Electrical Engineering
Department/Program
Electrical Engineering
Advisor
Vladimir Prodanov and Dale Dolan
Abstract
Household appliances utilize single-phase motors to perform everyday jobs whether it is to run a fan in an air conditioner or the compressor in a refrigerator. With the movement of the world going “green” and trying to make everything more efficient, it is a logical step to start with the items that we use every day. This can be done by replacing single-phase motors with three-phase motors in household appliances. Three-phase motors are 14% more efficient than single-phase motors when running at full load and typically cost less over a large range of sizes [1]. One major downside of incorporating three-phase motors in household appliance is that three-phase power is not readily available in homes. With the motor replacement, a single to three-phase converter is necessary to convert the single-phase wall power into the required three-phase input of the motor. One option is active conversion, which uses switches and introduces different stages that produce power loss [2]. An alternative solution is passive conversion that utilizes the resistances within the motor windings along with additional capacitors and inductors, which in theory are lossless. This study focuses on three different single to three-phase passive converters to run both wye and delta-connected three-phase induction motors, and a possible third winding configuration that utilizes one of the three converters. There will be an emphasis on proving the equivalency of two converters, one proposed by Stuart Marinus and Michel Malengret [11] and the other by Otto Smith [12]. Sensitivity analysis is performed to study the effects of variation of torque and converter component tolerances on the system.