Recommended Citation
August 1, 2012.
Abstract
Acetaminophen is a common analgesic and antipyretic. Metabolism of acetaminophen and acetaminophen-induced liver necrosis are predicted using physiologically-based pharmacokinetic (PBPK) modeling. Pharmacokinetic means the model determines where the drug is distributed in the body over time. Physiologically-based means the anatomy and physiology of the human body is reflected in the structure and functioning of the model. Acetaminophen is usually safe and effective when taken as recommended, but consumption at higher levels may lead to liver damage. Additionally, other factors such as alcoholic liver disease, smoking, and malnutrition affect the maximum safe dose of acetaminophen.
Disciplines
Biochemistry | Computational Biology | Pharmacology | Physiology | Toxicology
Mentor
Ali Navid
Lab site
Lawrence Livermore National Laboratory (LLNL)
Funding Acknowledgement
This material is based upon work supported by the S.D. Bechtel, Jr. Foundation and by the National Science Foundation under Grant No. 0952013. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the S.D. Bechtel, Jr. Foundation or the National Science Foundation. This project has also been made possible with support of the National Marine Sanctuary Foundation. The STAR program is administered by the Cal Poly Center for Excellence in Science and Mathematics Education (CESaME) on behalf of the California State University (CSU).
Included in
Biochemistry Commons, Computational Biology Commons, Pharmacology Commons, Physiology Commons, Toxicology Commons
URL: https://digitalcommons.calpoly.edu/star/135