Recommended Citation
Postprint version. Published in IEEE Transactions on Circuit and Systems for Video Technology, Volume 9, Issue 1, February 1, 1999, pages 70-84.
NOTE: At the time of publication, the author Xiaozheng Zhang was not yet affiliated with Cal Poly.
The definitive version is available at https://doi.org/10.1109/76.744276.
Abstract
Long-term memory motion-compensated prediction extends the spatial displacement vector utilized in block-based hybrid video coding by a variable time delay permitting the use of more frames than the previously decoded one for motion compensated prediction. The long-term memory covers several seconds of decoded frames at the encoder and decoder. The use of multiple frames for motion compensation in most cases provides significantly improved prediction gain. The variable time delay has to be transmitted as side information requiring an additional bit rate which may be prohibitive when the size of the long-term memory becomes too large. Therefore, we control the bit rate of the motion information by employing rate-constrained motion estimation. Simulation results are obtained by integrating long-term memory prediction into an H.263 codec. Reconstruction PSNR improvements up to 2 dB for the Foreman sequence and 1.5 dB for the Mother–Daughter sequence are demonstrated in comparison to the TMN-2.0 H.263 coder. The PSNR improvements correspond to bit-rate savings up to 34 and 30%, respectively. Mathematical inequalities are used to speed up motion estimation while achieving full prediction gain.
Disciplines
Electrical and Computer Engineering
Copyright
1999 IEEE.
Publisher statement
Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
URL: https://digitalcommons.calpoly.edu/eeng_fac/268