Date of Award


Degree Name

MS in Biomedical Engineering


Biomedical Engineering


College of Engineering


Kristen O'Halloran Cardinal

Advisor Department

Biomedical Engineering

Advisor College

College of Engineering


The Tissue Engineering Lab at California Polytechnic State University San Luis Obispo focuses on creating tissue-engineered Blood Vessel Mimics (BVMs) designed for the preclinical testing of neurovascular devices. These BVMs are composed of silicone models, representing anatomically accurate neurovasculatures, that are sodded with vascular cell types and then cultivated in bioreactors (which maintain physiologic conditions). These silicone models are currently sourced externally from industry partners, so the primary goal of this thesis was to develop the means and methods for the Tissue Engineering Lab to manufacture silicone models in-house.

The first aim of this thesis was to develop and explore injection molding as a possible technique for manufacturing silicone models; this included prototyping various designs of molds, developing a viable workflow for injection molding, then assessing the resulting silicone models through measurement characterization, cytotoxicity screening, and BVM set-ups. The first aim found that injection molding was a viable manufacturing technique for making silicone models. The second aim of this thesis explored an alternative manufacturing method, dip-casting, to produce silicone models. The development of dip-casting was similar to injection molding, where several prototyping stages resulted in a viable workflow for making silicone models; the resulting silicone models were then assessed via measurement characterization and a BVM set-up. The second aim found that, in addition to injection molding, dip-casting was a viable technique for making silicone models, although the overall morphology of the resulting models was less desirable than those made by injection molding. The third and final aim of this thesis compared both manufacturing techniques (i.e., injection molding and dip-casting); this aim established that injection molding was preferable for making simple (less intricate) silicone models, whereas dip-casting was preferable for producing complex (more intricate) silicone models. Although the dip-casting technique requires more development to capture complex shapes and produce models with desirable morphologies, the injection molding protocol was formalized into a prescribed workflow for the Tissue Engineering Lab to reference. Overall, this thesis developed and explored two different manufacturing techniques for making silicone models and found that both were capable of making silicone models that could be used to create tissue-engineered BVMs, with injection molded models being ready to implement as the dip-casting process continues to be refined.