Date of Award


Degree Name

MS in Civil and Environmental Engineering


Civil and Environmental Engineering


College of Engineering


Amro El Badawy

Advisor Department

Civil and Environmental Engineering

Advisor College

College of Engineering


Increasing water reuse opportunities for communities has become increasingly important as access to clean water is becoming more scarce. Reverse Osmosis (RO) is an advanced treatment technology used in water recycling wastewater for potable reuse applications. RO is a promising technology; however, the membranes have limitations including their high energy demand and their susceptibility to membrane fouling. The main objective of this study was to develop a reproducible method for the fabrication of RO membranes with enhanced flux and reduced susceptibility to fouling. Literature contains numerous publications on fabrication of thin film composite (TFC) RO membranes with high performance. However, the reports lacked all the details needed to fabricate a TFC RO membrane, making it difficult to replicate those published fabrication protocols. Based on the efforts of this study, the membrane fabrication procedures utilized did not yield the same quality and performance as reported in these articles. In this study, five TFC RO control membranes were replicated and compared. The membranes produced an average water flux of 21.9 ± 3.6 L/m2h (LMH) and an average salt rejection of 97.6% ± 2.0%. Based on these results, it was concluded that a reproducible fabrication technique was developed for fabricating consistent and reliable TFC RO membranes. Furthermore, this study investigated the role of fouling on TFC RO membrane performance. Enhancing membrane resistance to fouling helps maintain membrane selectivity, lifespan, and permeability. There has been an increasing interest in the modification of the RO membranes for enhanced hydrophilicity, which leads to improvements in fouling resistance. In this study, a positive and high charge density polymer, polyethylenimine (PEI), was introduced into the membrane matrix in varying layers of the membrane structure. PEI-1 was fabricated in-situ by grafting the PEI onto the polysulfone (PSf) support, while PEI-2 was fabricated via grafting of the PEI onto the membrane PA surface. The resulting membranes were characterized using Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Atomic Force Microscopy (AFM), and Goniometry. PEI-2 produced a more hydrophilic membrane when compared to PEI-1, however, PEI-1 performed better in terms of flux and selectivity. Multiple model foulants were used for investigating the modified membrane fouling performance. These model foulants were tested at varying concentrations, pH values, and with and without the presence of Ca2+ ions. The model foulants used were bovine serum albumin (BSA), sodium alginate, and humic acid. None of the model foulants resulted in a decrease in performance for the membrane over the duration of the tests (up to 13 hours). Future research is needed to develop a robust protocol for testing the fouling of the produced RO membranes within a reasonable timeframe.