Date of Award


Degree Name

MS in Mechanical Engineering


Mechanical Engineering


College of Engineering


Scott Hazelwood

Advisor Department

Biomedical Engineering

Advisor College

College of Engineering


Millions of individuals around the globe are impacted by osteoarthritis, which is the prevailing type of arthritis. This condition arises as a result of gradual deterioration of the protective cartilage that safeguards the ends of the bones. This is especially true of transtibial amputees, who have a significantly higher incidence of osteoarthritis of the knee in their intact limb than non-amputees. Engaging in regular physical activity, managing weight effectively, and undergoing specific treatments can potentially slow down the advancement of the disease and enhance pain relief and joint function. Nevertheless, the relationship between the type of exercise and its impact on cartilage stress remains uncertain. In order to address this question, tibiofemoral finite element analysis (FEA) models were developed. The models incorporated more realistic material properties for cartilage, hexahedral elements, and non-linear springs for ligaments. To ensure their accuracy, the models were validated against experimental data obtained from cadaveric studies. The contact loads and flexion angles of two individuals with amputations and one individual without amputation, which were obtained in a previous study conducted at Cal Poly, were implemented in the FEA models for gait, cycling, and elliptical exercises. The FEA models were used to extract the maximum stress values experienced in the tibial contact areas, specifically in the medial and lateral compartments of the knee. In cycling, the normalized contact pressure on the tibial articular cartilage, relative to body weight, was generally higher for the two participants with amputations compared to the control participant, except for the medial compartment. Furthermore, when comparing different exercises, cycling resulted in the lowest contact pressure values, with elliptical and walking exercises producing similar maximum values. The findings indicated that individuals with amputations are at a greater risk of developing OA, regardless of the type of exercise performed. However, among the different exercises studied, cycling was found to exert the lowest levels of compression stress on the tibial cartilage.