Date of Award


Degree Name

MS in Aerospace Engineering


Aerospace Engineering


College of Engineering


Kira Abercromby

Advisor Department

Aerospace Engineering

Advisor College

College of Engineering


This work discusses the modification and analysis of the Blue Thermal Vacuum Chamber (TVAC) located at the Space Environments Lab at California Polytechnic State University, San Luis Obispo. The modified design has a cylindrical test section and can accommodate 6U Cubesats or larger for educational or research purposes. The sizing process for the modified shroud cooling system and modular heating plates is discussed. The modified cooling system uses existing nitrogen plumbing into the chamber and control systems with a new copper shroud. The modified heating system uses modular heater plates, which utilize the existing three heater strips. The modified system includes high emissivity coatings for improved heat transfer performance, lower thermal mass materials to minimize thermal mass and liquid nitrogen consumption, and modular components for flexibility in operation. Analysis presented shows correlation between experimental results and a steady state thermal model using SolidWorks and SolidWorks Flow Simulation. The results demonstrate a maximum absolute difference in modeled vs experimental temperatures at measured locations of 11C in all cases, and 3C for test article temperatures only. Chamber performance is compared and characterized through a series of thermal vacuum tests and demonstrates capability exceeding ISO 19683 requirements for all thermal vacuum chamber testing categories except tolerance, with a tested temperature range of -145C at the shroud to 95C at the heater plates, >10 cycles between -15C and 55C, dwells in excess of 3 hours, ramp rates of 1-2C/min, and chamber pressures under