Date of Award


Degree Name

MS in Agriculture - Food Science and Nutrition


Food Science and Nutrition


College of Agriculture, Food, and Environmental Sciences


Amanda Lathrop

Advisor Department

Food Science and Nutrition

Advisor College

College of Agriculture, Food, and Environmental Sciences


The fresh-cut produce industry has seen expansive growth in recent years, to meet consumer demand ready-to-eat (RTE) salads have included the use of non-traditional ingredients. Uncommon ingredients include beet greens, kale, broccoli stalk, and Brussels sprouts, since these ingredients have not historically been consumed raw, potential food safety issues should be reassessed. Current processing technologies include produce washes that can reduce microbial levels but do not eradicate all populations. The lack of a kill step in produce processing emphasizes the need to minimize pathogen contamination during production and growth during a product’s shelf life. Listeria monocytogenes, a leading cause of foodborne illness related deaths, continues to challenge the industry with recent outbreaks and recalls of fresh-cut produce. These events present the need to better understand L. monocytogenes growth potential in RTE produce during storage and distribution. Traditional salad greens have been researched extensively, however, limited knowledge is available on new inclusions. While temperature is known to strongly influence microbial growth, the effects of physical abuse during storage and distribution are unknown. The purpose of this study was to characterize L. innocua’s, a surrogate for L. monocytogenes, growth behavior in processed beet greens, kale, broccoli stalk, and Brussels sprouts when exposed to simulated physical and thermal abuses during storage and distribution.

To evaluate L. innocua growth during storage and distribution produce samples were obtained from a local processor in retail packaging and surface inoculated. The samples were conditioned at 4℃ for 18h prior to being exposed to a series of physical abuses (compression, drop, and vibration) typical of storage and distribution. After abuse, produce was incubated at 4 or 8°C and sampled post-abuse through 16 and 11 days, respectively. Samples were enumerated for L. innocua, aerobic and psychrotrophic microorganisms, and lactic acid bacteria. To monitor growing conditions in each vegetable, product pH, water activity, and headspace (gas analysis), were observed at each time pull.

The study found physical abuse had no significant effect on L. innocua, or microbiota growth regardless of vegetable or incubation temperature (P > 0.05). Vegetable intrinsic factors (pH, Aw, and headspace) did not seem to interfere in L. innocua or background microbiota growth during incubation. All vegetables supported L. innocua growth under 8℃. Growth of L. innocua was greatest in beet greens, followed by kale, broccoli stalk, and Brussels sprouts in descending order. Significant growth of L. innocua at 4 and 8ᵒC was seen on day 6 and 4 in beet greens, 11 and 6 in Brussels sprouts, 16 and 4 in kale, and 16 and 6 in broccoli stalk (P < 0.05). Overall, these results show the studied RTE vegetables can support L. monocytogenes growth during storage and distribution, especially under abusive temperatures, demonstrating the importance of prevention strategies during processing and refrigeration throughout RTE produce shelf life.