Date of Award


Degree Name

MS in Biomedical Engineering


Biomedical and General Engineering


College of Engineering


Chris Heylman

Advisor Department

Biomedical and General Engineering

Advisor College

College of Engineering


Colorectal cancer is the third most common cancer in the United States and there is currently a lot of research going into new antitumor agents to kill the cancer. One method for replicating the tumor response to a drug in vivo is by creating an in vitro drug testing model to replicate the in vivo condition. This research project was conducted to determine the efficacy of testing tumor cultures in a microfluidic device as a way to provide accurate drug responses in vitro instead of using in vivo subjects in clinical trials. A total of four experiments were conducted with each experiment increasing the complexity of the culture model. The first experiment was a 2-dimensional tumor culture that was seeded in a well plate to study how 5-fluorouracil treatments affected the tumor cell viability. The second experiment was a 2-dimensional tumor culture that was seeded on top of a fibrin extracellular matrix (ECM) gel to determine how the tumor cells would respond to the 5-luorouracil treatments while growing on the fibrin. The third experiment was to create a 3-dimensional tumor culture that was seeded inside the fibrin ECM gel. This experiment was conducted to determine if tumor cells cultured within the fibrin gel could receive nutrients from the medium diffusing through the gel. Once the tumors responded as expected in the fibrin gel, the gel could be injected into a microfluidic device for the fourth experiment. The fourth experiment was a proof of concept to determine if the tumor cells could survive in the microfluidic device and be properly treated with 5-fluorouracil. The experiment with the cells seeded in the well plates showed that an increase in 5-fluorouracil concentration caused a significant decrease in cell viability. Both fibrin gel experiments showed that the average tumor size, total tumor area, and tumor count decreased as the 5-fluorouracil concentration increased. The tumor cells were successfully able to be cultured in the microfluidic device and the average tumor size decreased significantly when the culture was exposed to the 5-fluorouracil treatment.