Date of Award


Degree Name

MS in Electrical Engineering


Electrical Engineering


College of Engineering



Advisor Department

Electrical Engineering

Advisor College

College of Engineering


DC-DC converters can be separated into two main groups: switching converters and linear regulators. Linear regulators such as Low Dropout Regulators (LDOs) are straightforward to implement and have a very stable output with low voltage ripple. However, the efficiency of an LDO can fluctuate greatly, as the power dissipation is a function of the device’s input and output. On the other hand, a switching regulator uses a switch to regulate energy levels. These types of regulators are more versatile when a larger change of voltage is needed, as efficiency is relatively stable across larger steps of voltages. However, switching regulators tend to have a larger output voltage ripple, which can be an issue for sensitive systems. An approach to utilize both in cascaded configuration while providing a negative output voltage will be presented in this paper. The proposed two-stage conversion system consists of a switching pre-regulator that can track the negative output voltage of the second stage (LDO) such that the difference between input and output voltages is always kept small under varying output voltage while maintaining the high overall conversion efficiency. Computer simulation and hardware results demonstrate that the proposed system can track the negative output voltage well. Additionally, the results show that the proposed system can provide and maintain good overall efficiency, load regulation, and output voltage ripple across a wide range of outputs.