Date of Award


Degree Name

MS in Industrial Engineering


Industrial Technology


Xuan Wang


Additive Manufacturing, and specifically powder bed fusion processes, have advanced rapidly in recent years. Selective Laser Melting in particular has been adopted in a variety of industries from biomedical to aerospace because of its capability to produce complex components with numerous alloys, including stainless steels, nickel superalloys, and titanium alloys. Post-processing is required to treat or solve metallurgical issues such as porosity, residual stresses, and surface roughness. Because of the geometric complexity of SLM produced parts, the reduction of surface roughness with conventional processing has proven especially challenging. In this Thesis, two processes, abrasive flow machining and ultrasonic shot peening, are evaluated as surface finishing processes for selective laser melted 316L. Results of these experiments indicate that AFM can reliably polish as-built internal passages to 1 µm Ra or better but is unsuitable for passages with rapidly expanding or contracting cross-sections. AFM can also polish relatively small passages, but lattice components may prove too complex for effective processing. USP cannot achieve such low surface roughness, but it is a versatile process with multiple advantages. Exterior surfaces were consistently processed to 1.7 to 2.5 µm Ra. Interior surfaces experienced only partial processing and demonstrated high geometric dependence. USP significantly hardened the surface, but steel media hardened the surface better than ceramic media did. Both AFM and USP are recommended processes for the surface finishing of SLM manufactured parts. Good engineering judgement is necessary to determine when to use these processes and how to design for post-processing.