Date of Award


Degree Name

MS in Electrical Engineering


Electrical Engineering





Digitally-Controlled Two-Phase Zero-Voltage-Switching Quasi-Resonant Buck Converter

Brian Luc

This thesis entails the design, construction, and performance analysis of a digitally-controlled two-phase Zero-Voltage Switching Quasi-Resonant (ZVS-QR) buck converter. The converter is aimed to address the issues associated with powering CPUs operating at lower voltage and high current. To evaluate its performance, the Two-Phase ZVS-QR buck converter is compared against a traditional Two-Phase buck converter. The design procedure required to implement both converters through utilizing the characterization curve and formulas derived from their circuit configurations will be presented. Computer simulation of the Two-Phase ZVS-QR buck converter is provided to exhibit its operation and potential for use in low voltage and high current applications. In addition, hardware prototypes for both ZVS-QR and traditional buck converters are constructed utilizing a Programmable Interface Controller (PIC). Results from hardware tests demonstrate the success of using digital controller for the 60W 12VDC to 1.5VDC ZVS-QR buck converter. Merits and drawbacks based on the operation and performance of both converters will also be assessed and described. Further work to improve the performance of ZVS-QR will also be presented.

Keywords: Buck Converter; Zero-Voltage-Switching; Multi-Phase; Efficiency; Switching Loss