Recommended Citation
August 1, 2011.
Abstract
Salmonids, such as Chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss), are a staple economic, recreational, tribal, and environmental resource, yet many populations are unsustainable. This study was part of a broad scale effort to monitor the impact of downstream migration obstacles on juvenile salmonid health and survival, which is an essential step towards increasing Smolt-to-Adult Return ratios (SARs). The objective of this study was to determine if juvenile Chinook salmon and steelhead exhibit differing quantities of alphaII-Spectrin Breakdown Products (SBDPs) over two consecutive spring migration periods, indicative of neurogenesis rate and/or biological response to head injury. AlphaII-Spectrin is a cytoskeletal protein that fragments during necrosis and apoptosis. These fragments, known as SBDPs, have previously been used to detect head trauma in juvenile Chinook salmon. In this study, SBDPs were utilized as biomarkers to semi quantitatively assess brain cell damage and neurogenesis. SBDPs were detected through Western Blot analysis and compared between species using a T-Test (JMP 9). Results show that steelhead exhibit greater abundance of SBDP than Chinook salmon during the two consecutive spring migration periods that were analyzed. Results have implications for population dynamic analysis, hydropower facility operation, fish hatchery management, downstream fish transportation, habitat restoration, and future funding allocations for the protection of salmonids. PNNL-SA-81996.
Disciplines
Aquaculture and Fisheries | Biology | Cell Biology | Cellular and Molecular Physiology | Developmental Biology | Molecular and Cellular Neuroscience | Molecular Biology | Organismal Biological Physiology | Population Biology | Terrestrial and Aquatic Ecology
Mentor
Ann L. Miracle
Lab site
Pacific Northwest National Laboratory (PNNL)
Funding Acknowledgement
This material is based upon work supported by the S.D. Bechtel, Jr. Foundation and by the National Science Foundation under Grant No. 0952013. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the S.D. Bechtel, Jr. Foundation or the National Science Foundation.
Included in
Aquaculture and Fisheries Commons, Biology Commons, Cell Biology Commons, Cellular and Molecular Physiology Commons, Developmental Biology Commons, Molecular and Cellular Neuroscience Commons, Molecular Biology Commons, Organismal Biological Physiology Commons, Population Biology Commons, Terrestrial and Aquatic Ecology Commons
URL: https://digitalcommons.calpoly.edu/star/89