Recommended Citation
August 1, 2011.
Abstract
Dynamics of interactions between the drugs caffeine and ciprofloxacin are predicted using physiologically-based pharmacokinetic (PBPK) modeling. Pharmacokinetic means the model determines where the drugs are distributed in the body over time. Physiologically-based means the anatomy and physiology of the human body is reflected in the structure and functioning of the model. Multiple drugs can interact to increase or decrease their beneficial and/or undesired effects. This is important because some common substances, such as caffeine in coffee and soft drinks, are actually drugs that affect the body. By implementing the model as a computer program, it is relatively straightforward to perform “experiments” that would be too costly, time-consuming, or even unethical, if done on humans.
Disciplines
Biochemistry | Computational Biology | Pharmacology | Physiology
Mentor
Ali Navid
Lab site
Lawrence Livermore National Laboratory (LLNL)
Funding Acknowledgement
This material is based upon work supported by the S.D. Bechtel, Jr. Foundation and by the National Science Foundation under Grant No. 0952013. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the S.D. Bechtel, Jr. Foundation or the National Science Foundation.
Included in
Biochemistry Commons, Computational Biology Commons, Pharmacology Commons, Physiology Commons
URL: https://digitalcommons.calpoly.edu/star/49