Recommended Citation
August 1, 2013.
Abstract
One element of the Comprehensive Nuclear Test Ban Treaty (CTBT) is the provision for an on site inspection (OSI). The purpose of an OSI is to monitor for the occurrence of an underground nuclear explosion (UNE) in violation of the treaty. Detection of certain rare radioactive noble gases transported to the surface can be an excellent indicator of a UNE. These gases can be very difficult to capture and require specialized sampling methods. This study aims to determine an algorithm that will increase the efficiency of the subsurface gas sampling technique being used to detect UNEs. Continuous sampling of subsurface gases was determined not to be as efficient as triggering the start of sampling by a barometric algorithm or by an algorithm using a percentage of the maximum soil-gas radon level. By using such algorithms to increase the concentration levels of the samples we collect, we also increase the probability of detecting a UNE during an OSI.
Disciplines
Nuclear Engineering | Other Statistics and Probability
Mentor
Steve Hunter
Lab site
Lawrence Livermore National Laboratory (LLNL)
Funding Acknowledgement
This material is based upon work supported by the S.D. Bechtel, Jr. Foundation and by the National Science Foundation under Grant No. 0952013 and Grant No. 0833353. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the S.D. Bechtel, Jr. Foundation or the National Science Foundation. This project has also been made possible with support of the National Marine Sanctuary Foundation. The STAR program is administered by the Cal Poly Center for Excellence in Science and Mathematics Education (CESaME) on behalf of the California State University (CSU).
URL: https://digitalcommons.calpoly.edu/star/190