Recommended Citation
Published in The Astrophysical Journal, Volume 948, Issue 2, May 1, 2023.
The definitive version is available at https://doi.org/10.3847/1538-4357/accc84.
Abstract
We combine our dynamical modeling black-hole mass measurements from the Lick AGN Monitoring Project 2016 sample with measured cross-correlation time lags and line widths to recover individual scale factors, f, used in traditional reverberation-mapping analyses. We extend our sample by including prior results from Code for AGN Reverberation and Modeling of Emission Lines (CARAMEL) studies that have utilized our methods. Aiming to improve the precision of black-hole mass estimates, as well as uncover any regularities in the behavior of the broad-line region (BLR), we search for correlations between f and other AGN/BLR parameters. We find (i) evidence for a correlation between the virial coefficient log10(fmean,σ) and black-hole mass, (ii) marginal evidence for a similar correlation between log10( frms,σ) and black-hole mass, (iii) marginal evidence for an anticorrelation of BLR disk thickness with log10( fmean,FWHM) and log10( frms,FWHM), and (iv) marginal evidence for an anticorrelation of inclination angle with log10( fmean,FWHM), log10( frms,σ), and log10( fmean,σ). Last, we find marginal evidence for a correlation between line-profile shape, when using the root-mean-square spectrum, log10(FWHM/σ)rms, and the virial coefficient, log10( frms,σ), and investigate how BLR properties might be related to line-profile shape using CARAMEL models.
Disciplines
Physics
Copyright
© 2023 The Author(s)
Number of Pages
13
URL: https://digitalcommons.calpoly.edu/phy_fac/617