Recommended Citation
Published in The Astrophysical Journal, Volume 837, Issue 2 (131), March 1, 2017, pages 1-21.
Please note: Only the first four authors, Cal Poly affiliated authors, and the last author are listed above. For the complete list of authors, please download the article using the download button at the top of the page.
The definitive version is available at https://doi.org/10.3847/1538-4357/aa5eb1.
Abstract
We present the results of an optical spectroscopic monitoring program targeting NGC 5548 as part of a larger multiwavelength reverberation mapping campaign. The campaign spanned 6 months and achieved an almost daily cadence with observations from five ground-based telescopes. The Hβ and He ii λ4686 broad emission-line light curves lag that of the 5100 Å optical continuum by and , respectively. The Hβ lag relative to the 1158 Å ultraviolet continuum light curve measured by the Hubble Space Telescope is ~50% longer than that measured against the optical continuum, and the lag difference is consistent with the observed lag between the optical and ultraviolet continua. This suggests that the characteristic radius of the broad-line region is ~50% larger than the value inferred from optical data alone. We also measured velocity-resolved emission-line lags for Hβ and found a complex velocity-lag structure with shorter lags in the line wings, indicative of a broad-line region dominated by Keplerian motion. The responses of both the Hβ and He ii emission lines to the driving continuum changed significantly halfway through the campaign, a phenomenon also observed for C iv, Lyα, He ii(+O iii]), and Si iv(+O iv]) during the same monitoring period. Finally, given the optical luminosity of NGC 5548 during our campaign, the measured Hβ lag is a factor of five shorter than the expected value implied by the R BLR–L AGN relation based on the past behavior of NGC 5548.
Disciplines
Physics
Copyright
Copyright © 2017 American Astronomical Society
Number of Pages
21
URL: https://digitalcommons.calpoly.edu/phy_fac/576