Abstract

This study utilizes more than a year of observations made in shallow waters (~30 m) at the head of the Monterey Submarine Canyon to assess variability in the physical environment and internal bore field. The interaction of the internal tide with the canyon rim results in a semidiurnal tidal period pumping of cold–water masses (subthermocline waters) onto the adjacent shelf (i.e., internal bores). These internal bores are shown to be significantly coherent with the local sea surface height with minimal spatial variability when comparing two sites near the canyon head region. During the summer months, and periods of strong regional wind-driven upwelling and shoaling of the offshore thermocline, the canyon rim sites display elevated semidiurnal temperature variance. This semidiurnal variability reaches its annual minimum during the winter months when the regional upwelling favorable winds subside and the offshore thermocline deepens. Additionally, the observed internal bores show a distinct asymmetry between the leading (gradual cooling with velocities directed onto the shelf) and trailing edges (sharp warming with velocities directed into the canyon). It appears that the semidiurnal internal tide at the canyon head is a first-order control on the delivery of subthermocline waters to the nearshore coastal environment at this location.

Disciplines

Physics

Included in

Physics Commons

Share

COinS
 

URL: https://digitalcommons.calpoly.edu/phy_fac/483