College - Author 1
College of Engineering
Department - Author 1
Mechanical Engineering Department
Degree Name - Author 1
BS in Mechanical Engineering
College - Author 2
College of Engineering
Department - Author 2
Mechanical Engineering Department
Degree - Author 2
BS in Mechanical Engineering
College - Author 3
College of Engineering
Department - Author 3
Mechanical Engineering Department
Degree - Author 3
BS in Mechanical Engineering
College - Author 4
College of Engineering
Department - Author 4
Mechanical Engineering Department
Degree - Author 4
BS in Mechanical Engineering
Date
6-2023
Primary Advisor
John Fabijanic, College of Engineering, Mechanical Engineering Department
Additional Advisors
Jim Widmann, College of Engineering, Mechanical Engineering Department
Abstract/Summary
This report includes the design process undergone by Team Shifty in designing a vehicle for the NFPA’s Fluid Powered Vehicle challenge. The report covers the background of the competition, research done by the team, engineering specifications for the design, preliminary and final designs, the manufacturing plan and process, project management details, and several recommendations for future teams participating in the challenge.
The National Fluid Power Association, NFPA, is a trade association with the goal of connecting fluid power companies and advancing fluid power. With the goal of advancement in mind, NFPA hosts an annual Fluid Powered Vehicle Challenge (FPVC). Since before the NFPA took over this challenge, Cal Poly has produced a team to compete.
Team Shifty completed research into past Cal Poly teams as well as other competing university teams to define the engineering specifications for the new vehicle and decide the design directions. The final design includes a new frame to address issues with the last teams frame, a new hydraulic circuit design and selection of new components to improve the circuits performance in the FPVC events and reduce losses, and the addition of gear shifting to the vehicle. With respect to hydraulics, a new manifold was sourced to accommodate the simplified fluid circuit, along with a larger motor to allow the vehicle to operate at higher torque. The prior team’s pneumatic system was completely replaced by a pneumatic front gear shifting system. The electronics implemented was the same system as the previous year, including an STM microcontroller, Nextion touch screen display, and Hydraforce valve operator with only two solenoid valves. Working together, these components allowed the rider to toggle between three unique drive modes, including: direct, regen, and sprint.
To produce a functional vehicle, research and planning was put into manufacturing and assembly processes as detailed in the manufacturing plan. The final product failed to perform as proposed in Team Shifty’s Scope of Work, as the vehicle’s rear chain consistently fell off during operation at the competition. This resulted in the vehicle not placing during a few of the challenges, including the Sprint and Endurance races. The cause of this failure was a function of the frame flexing under dynamic loading due to insufficient torsional stiffness, as well as the rear chain being too small to handle the large output torque of the upsized rear motor.
URL: https://digitalcommons.calpoly.edu/mesp/738