Abstract

The aggregation of individual personality tests to predict team performance is widely accepted in management theory but has significant limitations: the isolated nature of individual personality surveys fails to capture much of the team dynamics that drive real-world team performance. Artificial Swarm Intelligence (ASI), a technology that enables networked teams to think together in real-time and answer questions as a unified system, promises a solution to these limitations by enabling teams to take personality tests together and converge upon answers that best represent the group’s disposition. In the present study, the group personality of 94 small teams was assessed by having teams take a standard Big Five Inventory (BFI) test both as individuals, and as a real-time system enabled by an ASI technology known as Swarm AI. The predictive accuracy of each personality assessment method was assessed by correlating the BFI personality traits to a range of real-world performance metrics. The results showed that assessments of personality generated using Swarm AI were far more predictive of team performance than the traditional survey-based method, showing a significant improvement in correlation with at least 25% of performance metrics, and in no case showing a significant decrease in predictive performance. This suggests that Swarm AI technology may be used as a highly effective team personality assessment tool that more accurately predicts future team performance than traditional survey approaches.

Disciplines

Industrial Technology

Number of Pages

8

Share

COinS
 

URL: https://digitalcommons.calpoly.edu/it_fac/105