Recommended Citation
Published in IEEE Journal of Solid-State Circuits, Volume 39, Issue 2, February 1, 2004, pages 297-307.
NOTE: At the time of publication, the author Vladimir Prodanov was not yet affiliated with Cal Poly.
The definitive version is available at https://doi.org/10.1109/JSSC.2003.821780.
Abstract
This paper presents a technique for implementing analog filters with wide dynamic range and low power dissipation and chip area. The desired dynamic range of the filter is divided into subranges, each covered by a different filtering path optimized specifically for this subrange. This results in small admittance levels for the individual filtering paths and correspondingly small power dissipation and chip area. The system provides undisturbed output during range switching, contrary to conventional automatic gain control (AGC)/filter arrangements that generate disturbances every time the gain of the AGC changes. We also report on a low-noise highly linear CMOS transconductor useful for high-frequency applications. A chip implementing the ideas of this paper was fabricated in a 0.25-μm digital CMOS process. The intended application of the filter is channel selection in an 802.11a/Hiperlan2 Wireless Ethernet receiver. The chip dissipates 9 mA, occupies an area of 0.7 mm2 , and maintains a signal/(noise+ IM3 distortion) ratio of at least 33 dB over a 48-dB signal range, with good blocker immunity. This performance represents at least an order of magnitude improvement over existing channel selection filters, even those that do not achieve disturbance-free operation.
Disciplines
Electrical and Computer Engineering
Copyright
2004 IEEE.
Publisher statement
Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
URL: https://digitalcommons.calpoly.edu/eeng_fac/139